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In 113 an asymptotic method was suggested for the investigation of non- 

stationary motions of a viscous incompressible liquid at large Reynolds 

numbers NRc;, arising as a result of the oscillation of various rigid 

bodies, either containing liquid or immersed in it, as well 8s at 

oscillations of liquid volumes having a free surface. 

In the present paper the idea of this method is used for the investi- 

gation of small oscillations of 8 physical pendulum having cavities com- 

pletely filled with an incompressible viscous liquid. 

1. 'he motion of a liquid contained in the cavity of an oscillating 

pendulum (Fig. 1) is described by the equations of Navier-Stokes and by 
the equation of continuity 

ag + (V’ * 0’) V’ = V’cp’ - Y (V’ x ia’) 

divV’ = 0 

( 
$2’ -_ V’x V’, I.$ -_ - F-u) 

Here U is the potential of mass forces acting on the liquid. 

WI) 

On the boundary of the cavity the condition of adhesion of the 
particles of the liquid to the walls of the cavity must be fulfilled, 
which gives the following boundary conditions: 

281) 
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Here 8 is the angle of deviation of the pendulum from its equilibrium 
position, u’, v’ and w’ are the components 
of the velocity vector V’. 

Let 

V’ = V” -t_ vo), 

where V. * is the velocity vector of the 
center of the cavity masses. Let us pass to 
a new system of coordinates (x”, y ‘: z ‘3 
with the origin at the center of the cavity 
masses and the axes parallel to the axes of 
the fixed system of coordinates (x*, y’, z’) 

In the new system of coordinates we shall 
have 

a? + cv” l V”) V” = V?p” - v (V” x W), 

divf”=O (1.3) 

Here 

Fig. I. 

fz”=V”xV”, qf=-pfp4.L-_(.*‘) 

On the boundary of the cavity 

li’ = . y”Q, V” =r. &, wn = 0 (1.4) 

Let us refer all the values to the characteristic scales. Let 

1’ = Tt, x” = Rx, y” = Ry, zw = Rz t V” = ;RV 
(1.5) 

$2” ZE $2, Ra 
rp” = ap ‘p, 6 = a@, 

I?2 
NR~ = &ii 

where 7’ is the characteristic time of oscillation, R is the character- 
istic dimension of the cavity, a is the characteristic amplitude and 
N Re is the Reynolds number. 

In dimensionless variables the equations (1.3) and the boundary con- 

ditions (1.4) become 

divV = 0 (4.6) 
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On the boundary of the cavity 

u= - ?&, 

291 

In the system of equations (1.6) the nonlinear terms have the charac- 

teristic amplitude a as factor. 

We shall consider oscillations with a small amplitude, and in what 

follows we shall linearize the equations (1.6) neglecting magnitudes of 

order a. 

The linearized system of equations is 

av - =vq+-$vxP), af 
div V = 0 (1.8) 

‘Ihe purpose of the present paper is to investigate such forms of 

oscillations for which the solution may be represented in the form 

6 (0 = ceO’, V = ceetU (2, y, 2) (1.9) 

Putting cp = ceO*@ (2, y, z), S2 = c@\v (z, y, z), we obtain for such 

motions 

ou = v&, -&VxW), 

On the boundary of the cavity 

divU = 0 (1.10) 

u, = - ya, u, = xo, u, = 0 (1.11) 

The relation (1.10) shows that the vector u represents the sum of 

the potential and the solenoidal vectors. Such a representation permits 

separation of the equations, obtaining for each unknown function a 

separate equation. 

Indeed, taking on each side of the first equation of the system 

(l.lO), the operation div, we obtain 

A@=0 (1.12) 

i.e. the function 0 is harmonic in the volume occupied by the liquid. 

Taking on both sides of the same equation the operation rot, we obtain 

dJ = 

nlus , each of the unknown functions UJ, ‘I’ satisfy a separate 

On the boundary of the cavity these functions are connected 

(1.13) 

equation. 

by the 
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following boundary conditions: 

Here Ix, Yy, Yz are the components of 

the vector 1. 

The fourth boundary condition determin- 

ing on the boundary the projection of the 

vector 't' onto the normal to the cavity 

surface will be given in the following in 

a specially selected curvilinear system 

of coordinates. 

Fig. 2. 

kt us consider cavities representing rotation figures whose axes 

are perpendicular to the oscillation plane of the body. 

Let us introduce a curvilinear system of coordinates connected with 

the surface of the cavity. Tn tl le case under consideration it is con- 

venient to introduce the following coordinates: n is the distance along 

the inner normal to the cavity surface measured from the cavity surface 

towards the interior of the cavity, a is the angle determining the posi- 

tion of the meridian plane, p is the length of the arc along the meridian 

(Fig. 3). The variables in the system of coordinates (x, y, z) are con- 

nected with tlie variables n, a, p in the curvilinear system of coordi- 

nates by the following relations: 

5 = - [r. + f sin 7 @) d/3 - n cos r @I)] sin a = - I r (B) - n cos 7 (PI 1 sin a 
0 

Y = [r. + (sin 7 (B) 4 - 12 cos 7 (Iv] cosa = [r(B) - ncos~(~)l~osa 
0 

z = ’ cos 7 @) dp + s n sin 7 (B) 
0 

Here rO is the radius of the circle obtained by intersecting the 

cavity with a plane perpendicular to the axis of symmetry of the cavity 

and passing through the center of the cavity masses; r(P) is the radius 

of the circumference formed by the points with same coordinate p on the 

surface of the cavity; y(p) is the angle between the tangent to the 
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meridian at the point with the coordinate p and the positive direction 
of the z-axis. Let us write in the new coordinate system the equations 
(1.13) and the boundary conditions. To abbreviate the writing, set 

ur, = Yy,, Yv = w,, Yy, = Y, 

Then we have in the curvilinear system of coordinates 

aY* = 
1 a 

[ ( I+ w’(P) ayt 
N,, Ir (P) - fi ~0s 7 WI 11 + w’ 631 K r (P) - fi ~0s 7 w Xi- 1 + 

a r(fi)--~0~7(fi)aYi. + d i+M@) -&+&$- n cos 7 @)I fl + 4 @)I fg)] 

( r’(P) =q$) (i=i,2, 3) (1.14) 

On the cavity boundary, for n = 0 

.a@ 1 

[ 
a’s ar (P) y, -- -- 

an N,, l’ @) aa ap 1 ==0 

I a@ I ay, 
-v-m -- 

a (1 + n7’ 03) yyp 
r (PI aa C NRe ap f3n I 

= r (p) 8 

(1.15) 

(1.16) 

a0 1 a P (PI - n ~0s 7 (8)) yy, w, --- 
aP N,, r (P) C an -~ =o aa 1 (1.17) 

We give the fourth boundary condition. The normal component Y,., of the 
vortex vector Y is determined by the tangential components Uo and II 

P 
of 

the velocity vector u in the following way: 

ym = ir (P) 
1 

[ 

a (1 -k w m us a (r (8) - 88 03s 7 (Pf) u, 
- n cos 7 @)I 11 + n-r’ ml aa - a8 1 

On the cavity boundary the vector U is known, consequently its com- 
ponents Uo and Up for n = 0 are known. The differentiation with respect 
to a and p for n = const is possible, therefore it is not difficult to 
calculate Y, for n = 0. After simple computations we obtain 

Y, = - 2 sin r (6) o (1.18) 

This relation concludes the system of the boundary conditions for 
the unknown functions @, Yi. 

Ya* “cp, Yn in the relations (1.15) to (1.18) represent the components 
of the vector Y in the curvilinear coordinate system. They are connected 
with the components Pi by the relations 
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Yy, c- - YY,cosa- Y,sina 

la = - Yy, sin 7 @) sin a + Y, sin 7 (g) cos a -f- Y, cos y @) (1.19) 

YY, = Y, co9 r (f3) sin a - Y, cos 7 (fl) cos a + UT3 sin 7 @) 

Let us assume that the parameters of the pendul~ ensure a suffi- 
ciently large Reynolds number. Set 

1 - =z es 
NR, 

(1.20) 

where E is a dimensionless small parameter. 

lhe idea of constructing the solution for large Reynolds numbers 
given in ClI is analogous to the idea of constructing the boundary layer. 
It is assumed that the vortices existing in the oscillating liquid con- 
tained in the cavity of the pendulum are essentially concentrated ir a 
thin layer at the walls of the cavity. ‘Ihis in turn permits one to 
assume that the derivatives of the components of the vector ‘? along the 
normal to the cavity surface are essentially larger than along the tan- 
gential directions. Let us introduce a “stretching” of the independent 
variable n. Set 

n = eq 

We seek the solution of the posed problem in the form of series of 
powers of a small parameter E 

(1.21) 

0 =ID,+ear+..., Yi=:Y,i+ Y,i + * e s (i = 1,2,3) 

Substituting the series (1.21) into the equations and boundary con- 
ditions, and equating to zero the sum of the coefficients of the para- 
meter E with zero exponent, we obtain the following problem for deter- 
mining the functions @, and Yoi 

Lm, = 0, 
d*Yoi 

GYY,i = - 
?tl 

(i = 1,2,3) (1.22) 

On the cavity boundary, for n = 0 
(1.23) 

aaz 1 cm,, 
an= 0, -_+!I!$ 

r (PI aa =r(fi)aS, a@0 ayotx 0 -q--q-= f y _ 0 
OR - 

From the first relation of the conditions (1.23) we see that the 
normal derivative of the harmonic function 0” on the cavity boundary is 
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equal to zero. Therefore, without 
tb, = const. 

loss of generality, one may assume 

The components of the vector Y in a curvilinear system of coordinates 

are related to the components of this vector in a Cartesian coordinate 
system by expressions (1.19). These relations are linear with respect to 
Y 01’ IO, md Yo3 and the coefficients of I,,, I,, and Y,, do not depend 

on n; consequently the functions Y,,, Y 
OP 

and Yen satisfy the same equa- 

tions as I, i. Thus 

(1.24) 

Cm the cavity boundary these functions satisfy the following boundary 
conditions 

3yoP - = r(P)@, a y,a 
a? --gj- = 0, w, = 0 (1.25) 

The general solution of the equation satisfied by to,, YoP and Y,, 
has the form 

u = c,e Gil _t_ c,e-f;n 

Let Be4 u > 0. I3y assumption, far away from the cavity walls the 
vortices are absent. hs in the theory of the boundary layer, we shall 
assume the value q = 0) corresponding to the inner points of the cavity 
sufficiently distant from the boundary. Then, according to the assump- 
tion of absence of vortices for n = m we shall have c1 = 0. 

The arbitrary constant of integration c2 is determined from the con- 
ditions (1.25). Finally we obtain for the functions Yoo, Yap, Yy,, 

y&7 = f-4 Y,p = - r @) o I/iiesc”, Yo, = 0 (1.26) 

We limit ourselves to determining only the first terms of the series 
(1.21). Within this accuracy let us write the components of the vector 
of the absolute velocity V’ in the rigid coordinate system with the 
origin at the point of suspension of the pendulum 

u’ -_ c -$ [lo - r @) 0 cos a e-“‘l + 0 (e) ] eat 
, 

-Gil 
=--c$[r@)osinae 

WI = 0 (1.27) 
$ + 0 @)I @‘, 

where 1 is the distance of the cavity masses from the axis of suspension 
referred to the characteristic dimension of the cavity. The obtained 
solution (1.27) is asymptotic. For it holds the following result whose 
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proof is not given here. The modulus of the difference 

Here V’ is the exact solution of the linearized problem, and V,,’ is 

the obtained approximate solution of the same problem. 

Thus, if the Reynolds number is sufficiently large the approximate 

solution ensures a good accuracy. 

’ In order to solve completely the problem posed, it is necessary W. 

to determine the as yet unknown constant a. To this end it is necessary 

to use the equation for the oscillations of a pendulum which may be ob- 

tained employing the theorem on the variation of the moment of momentum 

of the system. We have 

(2.1) 

$ \ (r’ x piV,‘) dz + $ \ (r’ x pV’) dT = 
l 

\ (r’ x pa) dr + \ (r’ x a) dT 
u, D D, D 

!lere “I is the volume of the solid body; D is the volume of the 

cavity; p1 and V, ’ are the density and the velocity of particles of the 

body, respectively; p and V’ are the density and the velocity of the 

points of the fluid, respectively; g is the vector of acceleration of 

the force of gravity; r’ is the radius vector from the axis of rotation 

to the point of the body or of the liquid. Tn our case, the equation of 

the moments (2.1) gives a projection which only on the z’-axis is not 

identically equal to zero. 

‘lhe integrals in (2.1) (returning to dimensional variables according 

to (1.5)) may be brought to the following form 

1 i d ( z r’ x pV’ 

ZJ 

ff 

c (Ml’%‘* f ~YMQts”) eb”’ 
P*’ 

(MQ = 2np r” WI 43’) 

(2.3) 

{ \ (r’ ): pig) dz + \ (P’ x pg) dr}z, = - cg (M,Z,’ + Ml’) ea’f’ 
n, b 

[$ \ (r’ x prv,‘) dt}z, = cMJc20’2ea’f’ 
c 
DI 

(3’ = f ) (2.2) 

(2.4) 

flere Al, is the mass of the solid body; M is the mass of the fluid; 

k is the radius of inertia of the solid body with respect to the SUS- 

pension axis of the pendulum; 1’ is the distance from the suspension 

axis to the center of the cavity masses; 1 1 ’ is the distance from the 

suspension axis to the center of the masses of the solid body; PI’, Fz’ 

are the coordinates of the poles of the cavity. 
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Substituting (2.2), (2.3) and (2.4) into (2.1) we obtain the follow- 

ing equation for determining o’: 

Put cr’ = vh*x. ‘Ihen (2.5) becomes 
(2.6) 

3 

22+2~+wa=o 
V2h4 

or y4 + y3 + q2 = 0 W J;= y, $,= 
Q”) 

JAet us prove that this equation has only two roots satisfying the 

condition Re y > 0. Put y = a + ip. 

Substituting into (2.6) we obtain for determining a and ~3 the system 

(a2 - fi’)” - 4a2ps + cl3 - 342 $ q2 = 0 

4a3 - 4afJ2 - fJ2 + 3a2 = 0 (2.7) 

Determining p* from the second equation of the system (2.7) and sub- 

stituting it into the first equation we obtain 
(2.3) 

64~~ + 96a5 + 48u4 + 8a3 - q2 (16~~ + 8a + 1) = 0. p,,, = f a p& 

There is only one change of sign of the coefficients in the first 

equation (2.8). b the Cartesian rule this polynomial has one positive 

root. We are not interested in the negative roots, since for them the 

condition Ree\l x is violated. From the second relation of the system 

(2.8) two values of p are determined differing only in sign. thus, the 

equation (2.6) has only two roots for the condition JSs y > 0. 

Let us seek the solution of equation (2.6) in two limiting cases, 

when : is large and when 7 is small. 

We recall that the solution of the problem on the motion of the fluid 

in the cavity of the pendulum was obtained for a large JIeynolds number. 

‘Ihe magnitude of the Reynolds number in turn de 

P 

ends 

characteristic time of one oscillation a/lIm u’ 

essentially on the 

, which will be deter- 

mined only after having solved the equation (2.6). Consequently, from 

all the possible solutions,of the equation (2.6) corresponding to the 

various parameters of the pendulum, one can use only those which ensure 

a sufficiently large Reynolds number. In the following we shall see that 

in the limiting cases under consideration of large and small q it is 

always possible to select such pendulum parameters that the Reynolds 

number remains large. 
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Let us consider the case of large q. We seek the solution of equa- 

tion (2.6) in form of a series of powers of l/J q 

(2.9) 

Substituting (2.9) into (2.6) and equating to zero the sum of the co- 

efficients of equal powers of l/d a, we obtain equations for determin- 

ing the unknowns yO, y1 etc. 

For y0 we ltave 

y: -i- 1 = 0, Reya>O 

Fig. 3. 

From where we find 

y()&(i+i), y,=$(1-- i) 

To determine y1 we have 

4y, + 1 s 0 or y, = - V, 

With an accuracy of up to the order of l/J7 

inclusive, we find 

y r/G i =-_+*iKji 
2 

or 

‘lbus, in the case considered the frequency n and the amplitude A of 

the oscillations of the pendulum will be 

--h-f6 n=o--1/V 
X’ 

A = exp 

respectively. 

For v - 0 the damping coefficient tends toward zero, and the fre- 

quency of oscillations tends toward o corresponding to oscillations of 

a pendulum with an ideal liquid. Let us compute by what fraction the 

amplitude decreases during T = n/ 11~1 ~‘1 . Denote this fraction by A. We 

have 

A=1-- 
exp Re (0%‘) 
exp Re (s’tl’) 

= 1- exp * (2.11) 
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Determining Re CT’ and [Im 0’1 from (2.10) and substituting into 

(2.11) we obtain 

A=1 (A + 0 for q + 0~) 

It is easy to see that the considered case of large q corresponds to 

oscillations close to the oscillations of a pendulum with an ideal liquid. 

Let us consider the simplest.example: let the pendulum represent a 

weightless spherical envelope filled with a viscous liquid and connected 

with the axis of suspension (Fig. 3) by means of a weightless rod. For 

such a pendulum we have 

The characteristic time of one oscillation with an accuracy up to 

magnitudes of the order l/d q is determined by 

(2.13) 

With the increase of the length of the pendulum I the magnitude 7’ in- 

creases. In this case there appears the danger of an inadmissible de- 

crease of the Reynolds number. Let us assume a value of the number 

IV,= >!04 and let us estimate the admissible value of the length 1 of 

the pendulum for various values of the radius R. By definition NRe = 

R2/vT. 

To keep NRe>104 it is necessary to require 

Let the pendulum be filled with water at t = 20°C (v = 1.01 x 10S6 

m2/sec). For R = 0.1 m we have l/R <lo, i.e. 1 \< 1 m. For R = 1 m we 

obtain 211: <lo’, i.e. I < 10 km. With an increase of R the admissible 

value of the ratio l/R increases proportionally to R3. ‘Ihus, the range 

of the applicability of the solution (2.12) is sufficiently large, 

Let us consider now the case of limiting small q values. We note that 

small q may be realized not only by increasing the kinematic coeffi- 
cient of viscosity v, which may lead to the diminution of the number 
N ne. Indeed, on the example of the above considered pendulum it is seen 
that this may be obtained by diminishing the length I of the pendulum 

or by increasing the radius R of the cavity. 
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(2.14) 

Let us represent (2.6) in the form 

Y3 (Y + 1) = - q2 

It follows that 

I y31 1 Y + 1 I = I - q2 I = q2 

With a decrease of 7 the product ly31 (y + 11 decreases. In this pro- 

cess the factor Iy + 1) cannot tend toward zero, since in the opposite 
case the condition Re y > 0 is violated. Consequently, the modulus of 

the root sought has the order of smallness 7 2/3 Proceeding from this we . 
seek the solution of the equation (2.6) in form of the series 

Y = !?” (Yo + q”% + * * .) 

For determining the unknowns y,, and y1 we obtain 

yo3 + 1 = 0, yo2 + 3y, = 0 

Wherefrom we find 

y,, = L + i 5 1 .v5 1 .v, 
2’ 2’ yo2=5--17, Yll=-;;---L~’ Yl2 = $+,f$i 

With an accuracy up to magnitudes of the order q2j3 inclusive we have 

y = $ q’/a [ (1 + f q’/a) f i VZf (1 - f q") ] 

For u’ we obtain the expression 

(2.15) 

Or limiting ourselves to magnitudes of the order 74’3 

As in the previous case, let us determine for which part the ampli- 

tude decreases from its initial value during the characteristic time T. 

We have 

A=l- expnRea’/IIm~‘I 

IJsing for determining Re CT’ and 1 Im ~‘1 the expression (2.15)) we 

obtain 
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A = 1 - esp [ - Fz (I- $ q’:a)] 

(A-l- exp(--3~0.84 8s q-0) (2.16) 

It is evident that tile considered case sharply differs from the case 

of oscillations of a pendulum with an ideal liquid. It turns out that 

it is possible to select the cavity of the pendulum so large or the 

length of the pendulum so small that it will not be possible to neglect 

tile effect of viscosity on the motion of the pendulum in spite of the 

presence of large Reynolds numbers. In the case of limiting small q’s 
during one swing the amplitude may diminish by a mamitude of the order 

of 84s of its initial value. 

Ve show on the example of a pendulum represented on Fig. 3 that by 

increasing the radius Ii of the cavity at constant 1 and v it is possible 

to achieve any desired large numbers NRe and any desired small q. For 

the pendulum under consideration we have 

&(_g,‘“(_k*if) (2.17) 

~= VP 1% v’j I?“’ 
4vRa’ 

N,, =2nY gag 
( ) 

‘Ir 
(2.18) 

From (2.16) it is easy to see that NRe - SJ and 9 - 0 for R - a. The 

oscillations of the pendulum differ in this case sharply from the 

oscillations of an analogous pendulum with an ideal liquid. Thus a 

pendulum filled with water at t = 20°C (v = 1.01 x lOA m’/sec) with a 

radius of the cavity R = 0.1 m and a length 1 = 0.00016 m will make five 

oscillations in a second, whiie an equal pendulum with an ideal liquid 

will make 25 oscillations in a second. With the above indicated para- 

meters of the pendulum we have 

q =: 0.0012, N,, =: 104 

which fully justifies the use of the solution (2.17) in this case. 
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